Indiziert in
  • Online-Zugriff auf Forschung in der Umwelt (OARE)
  • Öffnen Sie das J-Tor
  • Genamics JournalSeek
  • JournalTOCs
  • Scimago
  • Ulrichs Zeitschriftenverzeichnis
  • Zugang zu globaler Online-Forschung in der Landwirtschaft (AGORA)
  • Elektronische Zeitschriftenbibliothek
  • Zentrum für Landwirtschaft und Biowissenschaften International (CABI)
  • RefSeek
  • Verzeichnis der Indexierung von Forschungszeitschriften (DRJI)
  • Hamdard-Universität
  • EBSCO AZ
  • OCLC – WorldCat
  • Gelehrtersteer
  • SWB Online-Katalog
  • Virtuelle Bibliothek für Biologie (vifabio)
  • Publons
  • MIAR
  • Kommission für Universitätsstipendien
  • Euro-Pub
  • Google Scholar
Teile diese Seite
Zeitschriftenflyer
Flyer image

Abstrakt

Design and Deployment of Aqua Monitoring System Using Wireless Sensor Networks and IAR-Kick

Suresh Babu Chandanapalli, Sreenivasa Reddy E and Rajya Lakshmi D

In Aquaculture, the yields (shrimp, fish etc.) depend on the water characteristics of the aquaculture pond. For maximizing fish yields, the parameters which are to be kept at certain optimal levels in water are dissolved oxygen, temperature, salinity, turbidity, pH level, alkalinity and hardness, ammonia and nutrient levels. These parameters can vary a lot during the period of a day and can rapidly change depending on the external environmental conditions. Hence it is necessary to monitor these parameters with high frequency, if not continuously, for timely analysis and action. This need accurate real- time information system and performance in order to maximize their potential. Wireless sensor networks are used to monitor aqua farms for relevant parameters, such as pH levels, humidity, dissolved oxygen levels, water temperature, ammonia levels etc. This system consists of two modules which are transmitter station and receiver station. The transmitter station consists of sensor nodes such as pH, humidity, and temperature inside and outside of water, and also microcontrollers, GSM, analog/digital converters. The receiver station consists of GSM module for receiving the sensing data from transmitter through GSM network. The receiver station receives data through the com port and stores in PC in order to achieve human-computer interface. The graphical user interface was designed, so that farmers and investigators can observe, investigate and analyze the related data. The user interface allows us to convey the analyzed data in the form of a message to the farmers in their respective local languages to their Mobile Phones and alerts them in unhygienic environmental conditions. With this even semi-literate farmers can interact with the system and can understand the information in order to take suitable actions.