Indiziert in
  • Öffnen Sie das J-Tor
  • Genamics JournalSeek
  • Akademische Schlüssel
  • JournalTOCs
  • Forschungsbibel
  • Ulrichs Zeitschriftenverzeichnis
  • Zugang zu globaler Online-Forschung in der Landwirtschaft (AGORA)
  • Elektronische Zeitschriftenbibliothek
  • RefSeek
  • Hamdard-Universität
  • EBSCO AZ
  • OCLC – WorldCat
  • SWB Online-Katalog
  • Virtuelle Bibliothek für Biologie (vifabio)
  • Publons
  • MIAR
  • Genfer Stiftung für medizinische Ausbildung und Forschung
  • Euro-Pub
  • Google Scholar
Teile diese Seite
Zeitschriftenflyer
Flyer image

Abstrakt

The SARS-Cov-2 Novel Coronavirus: A Reflection about Enhancement of High-Resolution Microscopic Images

Rodríguez R, Mondeja BA, Lau LD, Vizcaino A, Acosta EF, González Y

After a year of hard battling with the novel coronavirus SARS Cov-2, the COVID-19 pandemic continues had a catastrophic effect on society and health worldwide. This pandemic has changed labor and economic relations in almost every country in the world, and the investment that has been made in the development of new treatment protocols and the creation of vaccines has been enormous. Important laboratories, hospitals and research centers around the world have been fighting against SARS-Cov-2, and within these researches computer vision has played a prominent role. The main aim of this work is to carry out a reflection on the enhancement of the microscopic images of the novel coronavirus SARS-Cov-2 from the results obtained and published. We will analyze the effectiveness of the algorithms proposed to highlight the S-spikes, and we will detail why deep learning, despite the popularity achieved, in this case was not beneficial.

Haftungsausschluss: Dieser Abstract wurde mit Hilfe von Künstlicher Intelligenz übersetzt und wurde noch nicht überprüft oder verifiziert.