Indiziert in
  • Öffnen Sie das J-Tor
  • Genamics JournalSeek
  • Akademische Schlüssel
  • JournalTOCs
  • CiteFactor
  • Ulrichs Zeitschriftenverzeichnis
  • Zugang zu globaler Online-Forschung in der Landwirtschaft (AGORA)
  • Elektronische Zeitschriftenbibliothek
  • Zentrum für Landwirtschaft und Biowissenschaften International (CABI)
  • RefSeek
  • Verzeichnis der Indexierung von Forschungszeitschriften (DRJI)
  • Hamdard-Universität
  • EBSCO AZ
  • OCLC – WorldCat
  • Gelehrtersteer
  • SWB Online-Katalog
  • Virtuelle Bibliothek für Biologie (vifabio)
  • Publons
  • Genfer Stiftung für medizinische Ausbildung und Forschung
  • Euro-Pub
  • Google Scholar
Teile diese Seite
Zeitschriftenflyer
Flyer image

Abstrakt

Studies on the Suitability of Soil Solirazation as a Physical Control Mechanism to Manage Phytonematode Population in the Soil and its Effect on Plant Growth

Zafar Sultan*, Aminu Imam, Abdulmumin A. Nuhu, Minjibir A, Muhammad SI

Plant Growth-Promoting Rhizobacteria (PGPR) are able to promote plant growth and/or induce local and systemic resistance against biotic and abiotic stresses, but the stability and durability of their efficiency still need more investigation. The present work aims to identify a compatible-PGPR-mixture effective to stimulate wheat growth, resistance against Mycosphaerella graminicola, the causal agent of Septoria tritici leaf Blotch (STB), and tolerance to drought stress.

The interactions between twenty-six PGPR and four wheat cultivars with different resistance levels to STB, in individual and co-inoculations, were tested. The results demonstrated higher external and internal root colonisation potential of Paenibacillus sp. strain B2 (PB2) in a mixture, referred hereafter as Mix-3, with strains Arthrobacter sp. SSM-004 and Microbacterium sp. SSM-001, and without an impact of wheat genotype and growth stage, as observed in its individual inoculations. Only with Mix-3 was wheat growth promotion observed. Interestingly, PB2 and Mix-3 eliminated the negative impact of drought stress on the Foliar Dry Biomass (FDB) and Root Dry Biomass (RDB).

Only in a mixture of three-compatible-PGPR (Mix-3) was plant growth promotion observed and the tolerance induced to drought stress was more effective. However, it seems that resistance induced against STB is PB2-dependent.