Indiziert in
  • Öffnen Sie das J-Tor
  • Genamics JournalSeek
  • Akademische Schlüssel
  • JournalTOCs
  • Forschungsbibel
  • Nationale Wissensinfrastruktur Chinas (CNKI)
  • Scimago
  • Ulrichs Zeitschriftenverzeichnis
  • Elektronische Zeitschriftenbibliothek
  • RefSeek
  • Hamdard-Universität
  • EBSCO AZ
  • OCLC – WorldCat
  • SWB Online-Katalog
  • Virtuelle Bibliothek für Biologie (vifabio)
  • Publons
  • MIAR
  • Wissenschaftliche Indexierungsdienste (SIS)
  • Euro-Pub
  • Google Scholar
Teile diese Seite
Zeitschriftenflyer
Flyer image

Abstrakt

Application of Nanotechnology of treatment modalities for Alzheimer's disease

Kiriacos Caroline

Alzheimer's disease is primary neurodegenerative pathology of unknown etiology and influenced by several factors with characteristic neuropathological and neurochemical features. Currently, drugs approved for the treatment of this disease only allow relieving symptoms and are accompanied by several side effects. Nanotechnology appears as an alternative for the treatment of Alzheimer's, as it offers many advantages to modern medicine allowing a non-invasive and targeted diagnosis and treatment, reducing adverse reactions and systemic effects. The article aims to recognize the potential of using nanoparticles in the treatment of Alzheimer's disease, identifying the most promising treatments and their possible side effects. Gold nanoparticles are capable of crossing BHE, carrying essential drugs to inhibit the aggregation of peptides, as well as dissolve pre-existing fibrilla. Biodegradable and biocompatible polymers, such as polyglycolic polylactide (PLGA), are a promising and safe approach and have been widely used. The best techniques are those that guarantee that nanoparticles are capable of crossing the BHE, reach their therapeutic target, as well as guarantee that these particles do not induce toxic effects in the body. Although nanoparticles are able to treat some diseases efficiently, little is known about their side effects; they may or may not be more harmful to the body than the disease they intended to treat. There are several promising therapeutic approaches, but none has yet been approved, since it is difficult to maintain adequate drug concentrations in the intraneuronal space. Establishing the toxic dose is necessary for the approved use of a nanoparticle in a treatment, but it is almost impossible to predict its cytotoxic effects in extraneuronal regions.